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Chapter 1 
 
The Binary Number System 
 

 
 
1.1 Why Binary? 
 

The number system that you are familiar with, that you use every day, is the decimal number system, also 
commonly referred to as the base-10 system.  When you perform computations such as 3 + 2 = 5, or 21 – 
7 = 14, you are using the decimal number system.  This system, which you likely learned in first or second 
grade, is ingrained into your subconscious; it’s the natural way that you think about numbers.  Of course it 
is not just you: It is the way that everyone thinks—and has always thought—about numbers and 
arithmetic.  Evidence exists that Egyptians were using a decimal number system five thousand years ago.  
The Roman numeral system, predominant for hundreds of years, was also a decimal number system 
(though organized differently from the Arabic base-10 number system that we are most familiar with).  
Indeed, base-10 systems, in one form or another, have been the most widely used number systems ever 
since civilization started counting. 
 
In dealing with the inner workings of a computer, though, you are going to have to learn to think in a 
different number system, the binary number system, also referred to as the base-2 system.    

 
Before considering why we might want to use a different number system, let’s first consider: Why do we 
use base-10?  The simple answer: We have 10 fingers.  Before the days of calculators and computers, we 
counted on our hands (many of us still do!). 
 
Consider a child counting a pile of pennies.  He would begin: “One, two, three, …, eight, nine.”  Upon 
reaching nine, the next penny counted makes the total one single group of ten pennies.  He then keeps 
counting: “One group of ten pennies… two groups of ten pennies… three groups of ten pennies … eight 
groups of ten pennies … nine groups of ten pennies…”  Upon reaching nine groups of ten pennies plus 
nine additional pennies, the next penny counted makes the total thus far: one single group of one hundred 
pennies.  Upon completing the task, the child might find that he has three groups of one hundred pennies, 
five groups of ten pennies, and two pennies left over: 352 pennies.     
 
More formally, the base-10 system is a positional system, where the rightmost digit is the ones position 
(the number of ones), the next digit to the left is the tens position (the number of groups of 10), the next 
digit to the left is the hundreds position (the number of groups of 100), and so forth.   The base-10 number 
system has 10 distinct symbols, or digits (0, 1, 2, 3,…8, 9).  In decimal notation, we write a number as a 
string of symbols, where each symbol is one of these ten digits, and to interpret a decimal number, we 
multiply each digit by the power of 10 associated with that digit’s position. 

 
For example, consider the decimal number: 6349.  This number is: 
 

       6  3  4  9     =    6 10 3 10 4 10 9 103 2 1 0� � � � � � �  
 

 
 

103     102        101             100   
          position                       position                      position                        position 

  (i.e., thousands position)  (i.e., hundreds position) (i.e., tens position)       (i.e., ones position) 
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There is nothing essentially “easier” about using the base-10 system.  It just seems more intuitive only 
because it is the only system that you have used extensively, and, again, the fact that it is used extensively 
is due to the fact that humans have 10 fingers.  If humans had six fingers, we would all be using a base-6 
system, and we would all find that system to be the most intuitive and natural. 
 
So, long ago, humans looked at their hands, saw ten fingers, and decided to use a base-10 system.  But 
how many fingers does a computer have? 
 
Consider: Computers are built from transistors, and an individual transistor can only be ON or OFF (two 
options).  Similarly, data storage devices can be optical or magnetic.  Optical storage devices store data in 
a specific location by controlling whether light is reflected off that location or is not reflected off that 
location (two options).  Likewise, magnetic storage devices store data in a specific location by 
magnetizing the particles in that location with a specific orientation.  We can have the north magnetic pole 
pointing in one direction, or the opposite direction (two options).    
 
Computers can most readily use two symbols, and therefore a base-2 system, or binary number system, is 
most appropriate.  The base-10 number system has 10 distinct symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.  The 
base-2 system has exactly two symbols: 0 and 1.  The base-10 symbols are termed digits.  The base-2 
symbols are termed binary digits, or bits for short.  All base-10 numbers are built as strings of digits (such 
as 6349).  All binary numbers are built as strings of bits (such as 1101).  Just as we would say that the 
decimal number 12890 has five digits, we would say that the binary number 11001 is a five-bit number. 
 
The point: All data in a computer is represented in binary.  The pictures of your last vacation stored on 
your hard drive—it’s all bits.  The YouTube video of the cat falling off the chair that you saw this 
morning—bits.  Your Facebook page—bits.  The tweet you sent—bits.  The email from your professor 
telling you to spend less time on vacation, browsing YouTube, updating your Facebook page and sending 
tweets—that’s bits too.  Everything is bits. 
 
To understand how computers work, you have to speak the language.  And the language of computers is 
the binary number system. 
           
 

1.2 The Binary Number System 
 

Consider again the example of a child counting a pile of pennies, but this time in binary.  He would begin 
with the first penny: “1.” The next penny counted makes the total one single group of two pennies.  What 
number is this?    
 
When the base-10 child reached nine (the highest symbol in his scheme), the next penny gave him “one 
group of ten”, denoted as 10, where the “1” indicated one collection of ten.  Similarly, when the base-2 
child reaches one (the highest symbol in his scheme), the next penny gives him “one group of two”, 
denoted as 10, where the “1” indicates one collection of two. 
 
Back to the base-2 child: The next penny makes one group of two pennies and one additional penny: 
“11.”  The next penny added makes two groups of two, which is one group of 4: “100.”  The “1” here 
indicates a collection of two groups of two, just as the “1” in the base-10 number 100 indicates ten groups 
of ten. 
 
Upon completing the counting task, base-2 child might find that he has one group of four pennies, no 
groups of two pennies, and one penny left over: 101 pennies.  The child counting the same pile of pennies 



 3 

in base-10 would conclude that there were 5 pennies.  So, 5 in base-10 is equivalent to 101 in base-2.  To 
avoid confusion when the base in use if not clear from the context, or when using multiple bases in a 
single expression, we append a subscript to the number to indicate the base, and write: 
 
      10 25 101      
 
Just as with decimal notation, we write a binary number as a string of symbols, but now each symbol is a 
0 or a 1.  To interpret a binary number, we multiply each digit by the power of 2 associated with that 
digit’s position. 
 
For example, consider the binary number 1101.  This number is: 
 

 
1  1  0  1   =  3 2 1 0

101 2 1 2 0 2 1 2 13� � � � � � �   
 
 

 
 

   23         22           21                 20   
       position        position                position        position 

(i.e., eights position)      (i.e., fours position)  (i.e., twos position)         (i.e., ones position) 
 

 
Since binary numbers can only contain the two symbols 0 and 1, numbers such as 25 and 1114000 cannot 
be binary numbers. 

 
We say that all data in a computer is stored in binary—that is, as 1’s and 0’s.  It is important to keep in 
mind that values of 0 and 1 are logical values, not the values of a physical quantity, such as a voltage.  The 
actual physical binary values used to store data internally within a computer might be, for instance, 5 volts 
and 0 volts, or perhaps 3.3 volts and 0.3 volts or perhaps reflection and no reflection.  The two values that 
are used to physically store data can differ within different portions of the same computer.  All that really 
matters is that there are two different symbols, so we will always refer to them as 0 and 1. 
 
A string of eight bits (such as 11000110) is termed a byte.  A collection of four bits (such as 1011) is 
smaller than a byte, and is hence termed a nibble.  (This is the sort of nerd-humor for which engineers are 
famous.)  
 
The idea of describing numbers using a positional system, as we have illustrated for base-10 and base-2, 
can be extended to any base.  For example, the base-4 number 231 is: 
 

 
2  3  1    =  2 1 0

102 4 3 4 1 4 45� � � � �   
 
 

 
 

         24           14                          04   
       position                 position                position 

     (i.e., sixteens position)    (i.e., fours position)              (i.e., ones position) 
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1.3 Converting Between Binary Numbers and Decimal Numbers 
 
We humans about numbers using the decimal number system, whereas computers use the binary number 
system.  We need to be able to readily shift between the binary and decimal number representations. 

 
Converting a Binary Number to a Decimal Number 
 

To convert a binary number to a decimal number, we simply write the binary number as a sum of powers 
of 2. For example, to convert the binary number 1011 to a decimal number, we note that the rightmost 
position is the ones position and the bit value in this position is a 1.  So, this rightmost bit has the decimal 
value of 01 2� .  The next position to the left is the twos position, and the bit value in this position is also a 
1.  So, this next bit has the decimal value of 11 2� .  The next position to the left is the fours position, and 
the bit value in this position is a 0.  The leftmost position is the eights position, and the bit value in this 
position is a 1.  So, this leftmost bit has the decimal value of 31 2� .  Thus:        

 
  3 2 1 0

2 101011 1 2 0 2 1 2 1 2 8 2 1 11 � � � � � � �  � �   

 
Example                                                                                                                                                                
 
Express the binary number 110110 as a decimal number. 
 

Solution:   
 

                                                                                                                                                               

 
As a shorthand means of converting a binary number to a decimal number, simply write the position value 
below each bit (i.e., write a “1” below the rightmost bit, then a “2” below the next bit to the left, then a “4” 
below the next bit to the left, etc.), and then add the position values for those bits that have a value of 1. 

 
For example, to convert the binary number 10101 to decimal, we annotate the position values below the 
bit values: 

 
    1    0    1    0    1  
    16  8    4    2    1 
 

Then we add the position values for those positions that have a bit value of 1:  16 + 4 + 1 = 21.  Thus  
 
    2 1010101 21  

 
Example                                                                                                                                                                
 
Express the binary number 100000 as a decimal number. 

 
Solution:    
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Given a binary number, you can now convert it to the equivalent decimal number.  We will now present 
two different methods for converting in the other direction: from decimal to binary.  The first method is 
more intuitive.  The second method is much more readily adaptable to programming on a computer.  

 
Converting a Decimal Number to a Binary Number: Method 1 

 
The first method of converting from a decimal number to a binary number entails expressing the decimal 
number as a sum of powers of 2.  To convert the decimal number x to binary: 

 
Step 1. Find the highest power of two less than or equal to x.  The binary representation will have a one 

in this position.  Denote the value of this highest power of 2 as y.     
 
Step 2. Now subtract this power of two (y) from the decimal number (x), denoting the result as z: 
 

.z x y �  
 

Step 3. If 0z  , you are done.  Otherwise, let x z  and return to Step 1 above. 
 

 
Example                                                                                                                                                                

 
Convert the decimal number 78 to binary. 

 
Solution:  Think to yourself: “Self, what is the largest power of 2 that is less than or equal to 78?” 

 
 
 
 
 
 
 
 

So, the largest power of 2 that is less than 78 is ____.  Thus the binary representation of 78 will have 
 
 

 
     
____________ ___________  ____________ ___________  __________  _________  ________ 

62 64  52 32  42 16  32 8   22 4   12 2   02 1  
 

 
 

What is the largest power of 2 that is less than or equal to  
 

The answer:  
 
     
____________ ___________  ____________ ___________  __________  _________  ________ 

62 64  52 32  42 16  32 8   22 4   12 2   02 1  
 

 



 6 

 
What is the largest power of 2 that is less than or equal to  ___? 

 
The answer:  

 
 
____________ ___________  ____________ ___________  __________  _________  ________ 

62 64  52 32  42 16  32 8   22 4   12 2   02 1  
 

Now, subtracting 4 from our number 6 gives 6 4 2�  .  Thus, 2 is now the number we are working with. 
 
What is the largest power of 2 that is less than or equal to 2? 

 
 

 
 
____________ ___________  ____________ ___________  __________  _________  ________ 

62 64  52 32  42 16  32 8   22 4   12 2   02 1  
 

Now, subtracting 2 from our number 2 gives 0, so we are done.  Filling in zeros in all remaining position 
(i.e., all positions that do not have a 1), we have our answer: The decimal number 78 in binary is   

  
 
____________ ___________  ____________ ___________  __________  _________  ________ 

62 64  52 32  42 16  32 8   22 4   12 2   02 1  
 

 
 

                                                                                                                                                               

 
Example                                                                                                                                                                

 
Convert the decimal number 201 to binary. 
 

Solution:    
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You should “memorize” the binary representations of the decimal digits 0 through 15 shown below. 
 
 
 

 
 
 
 
 
 
 

You may be wondering about the leading zeros in the table above.  For example, the decimal number 5 is 
represented in the table as the binary number 0101.  We could have represented the binary equivalent of 5 
as 101, 00101, 0000000101, or with any other number of leading zeros.  All answers are correct. 
 
Sometimes, though, you will be given the size of a storage location.  When you are given the size of the 
storage location, include the leading zeros to show all bits in the storage location.  For example, if told to 
represent decimal 5 as an 8-bit binary number, your answer should be 00000101. 

 
Converting a Decimal Number to a Binary Number: Method 2 

 
The second method of converting a decimal number to a binary number entails repeatedly dividing the 
decimal number by 2, keeping track of the remainder at each step.  To convert the decimal number x to 
binary: 

 

Step 1.   Divide x by 2 to obtain a quotient and remainder.  The remainder will be 0 or 1. 
 

Step 2. If the quotient is zero, you are finished: Proceed to Step 3.  Otherwise, go back to Step 1, 
assigning x to be the value of the most-recent quotient from Step 1. 

 

Step 3. The sequence of remainders forms the binary representation of the number. 
 

Example                                                                                                                                                                
 

Convert the decimal number 53 to binary using the second method described above. 
 
 Solution:   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                                                                                                                                               

Decimal Number Binary Number 
0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 

Decimal Number Binary Number 
8 1000 
9 1001 

10 1010 
11 1011 
12 1100 
13 1101 
14 1110 
15 1111 
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Note that the remainder from the very first division of the decimal number by two provides the least 
significant bit (i.e., the rightmost bit) in the binary representation.  The remainder from each division then 
provides successive bits, from right to left.  The remainder of the final division (which will always be 1) 
will provide the most significant bit (i.e., the rightmost bit) in the binary representation.      

 
Example                                                                                                                                                                

 
Convert the decimal number 201 to binary. 
 

Solution: The full set of calculations is shown below.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                                                                                                                                               

 
You may find the second method easier to use than the first, but you might be thinking: Why does this 
work?  An explanation of why this algorithm works is presented in Appendix 1-1. 
 
So, now you should be comfortable going back and forth between binary and decimal representations. 
 

 

Decimal number Binary number

Given a decimal number, convert it to binary

Given a binary number, convert it to decimal  
 
 

1.4 Binary Addition 
 
We are familiar with adding decimal (base-10) numbers.  But how do we add binary numbers?  Consider 
the equation you encountered in first grade: 

 
   1 + 1 = 2 
 

If you converted each decimal number in this equation to binary, the result would be: 
 
  1  +  1  =  10 
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We see that when we add two binary ones together, we have a carry into the next column (from the ones 
column to the twos column).  This idea of “carrying over to the next column” when adding binary 
numbers together is analogous to carrying over when adding decimal numbers.   
 
Think of performing the addition of the decimal numbers 8 and 4: 

 
   8 
           + 4 
    ? 
 

The result (which we know is the decimal number twelve) cannot be represented by a single decimal 
symbol (of which the choices are 0, 1, 2, 3, 4, 5, 6, 8 and 9) contained just within the ones column.  We 
have to carry over a quantity of ten to the tens column (where it becomes 1 since it is now in the tens 
column), and subtract ten from the two numbers we are adding: 8 + 4 – 10 = 2.     
    

   8 
           + 4 
             12 
 

The same principle carries over to binary addition (or addition in any number system): If the result of the 
addition is a number too big to be represented as a single digit in the number system, we carry over to the 
next column, and subtract the quantity from the numbers being added together. 

 
 Think of performing the addition of the binary numbers 1 and 1: 
 
   1 
           + 1 
    ? 
 

The result (which we know to be equivalent to the decimal number two) cannot be represented by a single 
binary symbol (0 or 1) contained just within the ones column.  We have to carry over a quantity of two to 
the twos column (where it becomes 1 since it is in the twos column), and subtract two from the numbers 
we are adding: 1 + 1 – 2 = 0.        

 
   1 
           + 1 
             10 
 
 Think of performing the addition of the three binary numbers 1 + 1 + 1: 
 
   1 
   1 
           + 1 
    ? 
 

The result (which we know to be equivalent to the decimal number three) cannot be represented by a 
single binary symbol (0 or 1) contained just within the ones column.  We have to carry over a quantity of 
two to the twos column (where it becomes 1 since it is now in the twos column), and subtract two from the 
three numbers we are adding: 1 + 1 + 1 – 2 = 1.      
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   1 
   1 
           + 1 
             11 
 

Addition of multi-bit binary numbers is accomplished using the results above, on a column-by-column 
basis.  That is, for each column, use the results:  
 
   0 + 0 = 0 
    1 + 0 = 1 
      1 + 1 = 0 with a carry of 1 to the left 
   1 + 1 + 1 = 1 with a carry of 1 to the left  
 
For instance, consider the addition of the two binary numbers 11 and 01: 

 
   11 
           + 01 
   ?? 
 

Starting with the right column, 1 + 1 results in 0, with a 1 carried to the left: 
 
   1 
   11 
           + 01 
   ?0 
 

Now, in the left column, we are adding 1 + 1 + 0, which results in 0, with a 1 carried to the left: 
  
            11 
   11 
           + 01 
   00 
 

Finally, we consider the leftmost column (which consists of just the carryover from the column to its 
right), resulting in:  
 

   11 
           + 01 
            100 

 
Example                                                                                                                                                                

 
Perform the addition of the binary numbers: 
 

   1 0 1 1 0 1   1 1 1 1 
  +        1 0 1 1    +      1 0 1 
        -------------   -------- 

 
Solution: 
 

   1 0 1 1 0 1   1 1 1 1 
  +        1 0 1 1    +      1 0 1 
        -------------   -------- 
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Example                                                                                                                                                                
 

Suppose we use 4 bits to store integers.  Show the addition of the decimal numbers 13 + 2  in binary. 
 

Solution: 
 

    
 
 
 
 
 
 
 

 
                                                                                                                                                               

 
 

1.5 Overflow 
 
Your friend has written a computer program that initializes a natural number (i.e., a nonnegative integer) 
to the number 4,294,967,293 and then successively adds 1 to the number, printing the result to the screen.  
He believes that his program must have an error since it produces the results shown below.  He asks for 
your help.    

 
 

 
 
 

Putting aside the obvious question “Why would your friend have written this program?”, you decide to 
help.  You notice that the program seems to start out well, adding one and printing out the correct result 
for the first two iterations, but then, upon reaching the value 4,294,967,295, the addition of one seems to 
“reset” the value back to zero.  The program then seems to resume normal operation, adding one and 
printing out the correct result.     

 
What’s going on here? 
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To explore this problem, first consider a computer that uses 4 bits to store integers.  The number 15 would 
be stored as 1111.  What would be the result of the calculation 15 + 1 in binary?  Performing binary 
addition: 
 

       1 1 1 1  
  +     0 0 0 1    
          --------   

      1 0 0 0 0 
 
The result appears to be 10000 which would seem to be correct, since this is, after all, equivalent to 16 in 
decimal, and that is the right result for 15 + 1. 
 
Except that this would not be the answer the computer would supply!  The correct answer to the binary 
addition, 10000, requires five bits.  But the computer (in our example) stores all integers in four bits.  All 
bits beyond the rightmost four bits are discarded.  So, the answer to 15 + 1 in binary on our 4-bit computer 
would be zero (i.e., 0000). 
 
This scenario, where an answer requires more bits than the computer has available, is called overflow.   

 
Example                                                                                                                                                                

 
Consider a computer that uses 4 bits to store integers.   Show the binary calculation of 13 + 5. 
 

Solution: 
 

     
 
 
  
 

Since only the rightmost four bits are retained, the answer would be 0010.  This is, of course, incorrect, 
since overflow has occurred. 

 
                                                                                                                                                               

 
Overflow in the storage of binary numbers is a real practical problem, and has been the bane of many a 
programmer.  The most visually spectacular overflow error occurred in 1996 when the European Space 
Agency’s Ariane 5 rocket exploded 37 seconds into its maiden launch, sending $500 million dollars into 
oblivion.  The programmers asked an on-board computer to store a 64-bit velocity in a 16-bit space.  Only 
the rightmost 16-bits were retained.  The rocket attempted to respond to the erroneous velocity, swerving 
itself into disintegration.         

 
So, if a computer stores positive integers in a certain number of bits, what is the largest number that can be 
stored before overflow occurs?  

 
Using 3 bits the largest binary integer that can be stored is:   

 
Using 4 bits the largest binary integer that can be stored is:   

 
Using 5 bits the largest binary integer that can be stored is:   
 
We would be tempted to conclude that using n bits the largest binary integer that can be stored is:   
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This is in fact correct, but the above argument is not a proof you should be comfortable with.   
 
To determine the largest number that can be stored in n bits, first consider the largest number that can be 
stored in 4 bits:   

 
1  1  1  1    
 
 

 
 

   23         22           21                 20   
       position        position                position        position 

 
 

Note that the most significant bit position is the 23  position.  If we add 1 to this number (and ignore the 
fact that overflow will occur), the result will be 10000.  Converting this to decimal is easy: There is only 
a single 1 in the 42  position.  So, one number larger than 1111 is equal to 42 .  So 1111 must be equal 
to 42 1� . 
 
More generally, the most significant bit position in an n-bit number will be the 12n�  position.  The largest 
number that can be stored in n bits will be a string of n ones (where the leftmost bit is in the 12n�  position).  
Now, if we add 1 to this string of n ones (and ignore the fact that overflow will occur), the result will be a 
single 1 in the 2n  position, followed by zeros.  So, one number larger than the largest number that can be 
stored in n bits is equal to 2n .  So, the largest number that can be stored in n bits is 2 1n � . 

      
Example                                                                                                                                                                

 
What is the largest positive integer that can be stored on a computer if the computer stores positive integers in 
four bytes? 
 

Solution:  
 

                                                                                                                                                               

 
Can you now inform your friend about the problem in his program? 

 
 
1.5 Negative Binary Numbers 

 
We need to represent negative integers also.  How do we handle that? 
 
You might be tempted to reply: “Easy, just use a negative sign!”  But this won’t work.  Remember: 
everything must be represented as bits—that is, ones and zeros! A negative sign is neither a one nor a zero. 

 
The most intuitive solution might be the sign and magnitude representation.  With this notation: 

 
x Let the leftmost bit represent the sign, say 0 for positive and 1 for negative. 

 

x The remaining bits represent the magnitude. 
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For example, suppose we store integers in four bits with the sign and magnitude scheme.   Then 3 would 
be stored as  
 

    0011 
 

and 2�  would be stored as  
 

     1010 
 

As appealing as this scheme might seem at first, it is not used.  To see why, consider the addition of 3 and 
– 2.  Using addition in the typical way, we would see 

 
      3    0011 
   2�    1010 
          
 

But  
 

So, addition is not straightforward if the signs of the two arguments differ.  To make the sign-magnitude 
scheme work, think about what you would need to do:   

 
x You would have to first determine which of the two arguments has the larger magnitude (ignoring 

the sign bit) 
 

x You would then subtract the small magnitude from the larger magnitude 
 

x You would then attach to this result the sign of the quantity that had the higher magnitude 
 

While this could be made to work, the resulting hardware would be unnecessarily complex.   
 

As a further annoyance with this scheme, it has two representations for zero:                           (It took 
mathematicians over a thousand years before they could handle the concept of zero…Surely we should 
pause before casually introducing a system with two zeros!) 

 
The Two’s Complement Notation 
   

All computers represent integers in a manner that allows both positive and negative numbers.  To 
represent positive numbers, simply use its binary representation, as we have done before.  Negative binary 
numbers are represented in what is called “two’s complement notation”.  To find the two’s complement of 
a binary number, change each 1 to a zero and each zero to a one (i.e., invert all the bits), then add one to 
this quantity. 

 
Example                                                                                                                                                                

 
What is the two’s complement of the binary number  10010010 ? 
 

Solution: 
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So…how do we find the representation of a negative decimal number?  Do the following: 
 

x First find the binary representation of the number without the negative sign 
 

x Then take the two’s complement.  The result is the representation of the negative number. 
 
Example                                                                                                                                                                

 
Express the decimal integer   –13  as an eight bit binary number. 
 

Solution:   
 
 
 
 
 

 
                                                                                                                                                               

 
Example                                                                                                                                                                
 
Express the decimal integer  �53 as an eight bit binary number. 
 

Solution: 
 
 
 
 
 

 
                                                                                                                                                               

 
Example                                                                                                                                                                
 
Suppose we store integers in 4 bits.  Represent 1�  in two’s complement notation. 
 

Solution:   
 

 
 

                                                                                                                                                               

 
There is a neat shortcut to find the two’s complement of a binary number.  Starting at the right, and 
moving to the left, leave all bits unchanged until the first 1 is encountered.  Leaving this very first 1 
unchanged, continue moving to the left inverting all bits from that point onward.  For instance, we noted 
above that the decimal number +53 in binary is 
 

0 0 1 1 0 1 0 1  
 
To find the two’s complement, we start at the right and move to the left, stopping at the first 1 that we 
encounter, which in this case happens to be the rightmost bit.  We leave this bit unchanged, but invert all 
other bits to the left, resulting in  
 

1 1 0 0 1 0 1 1  
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Example                                                                                                                                                                
 
Use the shortcut technique to determine the two’s complement representation of  -92 using 8 bits 
 

Solution:   
 
 
 
 
 

 
                                                                                                                                                               

 
You are likely wondering: Why is the two’s complement notation a good representation for negative 
numbers?  Why do we flip all the bits and add one instead of, say, flipping half the bits and adding 5? 
 
Here’s why: A binary number, added to its two’s complement, results in zero.  This is “how its ‘sposed to 
be: a number added to its negative should give zero.   
 
For example, let’s presume integers are represented using 8 bits.  Back in Section 1.3 you determined that 
the binary representation of 53 was 00110101.  Two examples back you determined that �53 was 
11001011.  Let’s add 53 to  �53: 
 

 

        53: 0 0 1 1 0 1 0 1   
                  -53: 1 1 0 0 1 0 1 1 
      --------------- 
       1 0 0 0 0 0 0 0 0   
 

If we are only using 8 bits, then only the eight least significant bits are retained, and the result is zero (as it 
should be). 

 
If we represent negative numbers using two’s complement notation, then binary addition involving 
negative numbers will give the correct result.  Every computer today uses two’s complement notation for 
the storage of integers. 

 
Example                                                                                                                                                                
 
Suppose a computer stores integers in 4 bits using two’s complement notation.  Show the calculation – 5 + 7. 
 

Solution: 
 
    
 
 
  

 
                                                                                                                                                               

 
You may agree that if we represent negative numbers using two’s complement notation, then binary 
addition involving negative numbers seems to give the correct results, but you might be thinking: Why 
does this work?  An explanation of why this algorithm works is presented in Appendix 1-2. 
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1.6 Two’s Complement: A Closer Look 
 
Suppose we have a computer that stores integers in four bits.  If we only have non-negative integers, then 
we can represent the integers 0 – 15 using four bits:   

 
Decimal Number           Binary Number 

0   0000 
1   0001 
2   0010 
3   0011 
4   0100 
5   0101 
6   0110 
7   0111 
8   1000 
9   1001 
10   1010 
11   1011 
12   1100 
13   1101 
14   1110 
15   1111 

 
Note that we are limited to 16 possible four-bit strings.  These 16 unique strings are shown in the right 
column of the table above.  Since we have 16 unique 4-bit strings possible, we can represent 16 unique 
decimal numbers.  These 16 decimal numbers (0 – 15) are shown in the left column of the table above.  
The assignment of decimal number to bit string is performed by the usual decimal to binary conversion. 
 
Now, suppose we still want to restrict ourselves to storing integers in four bits, but we want to include 
both positive and negative integers (using two’s complement notation, since we know that works!).  What 
integers can we now store, if only four bits are available? 

 
It should be clear that we cannot store the integers –15 to +15 within our 4-bit space.  The range –15 to 
+15 comprises 31 unique integers, but since we have only 16 possible bit strings available, we can only 
store 16 unique integers within our four bit allotment. 

 
You should agree that we should store at least the integers –7 to +7.  But this range will comprise 15 
integers, and we have the ability to store sixteen—so there is room for one more!  Should it be +8?  Or 
should it be –8?  It can’t be both.  Let’s begin by filling in the integers 0-7: 

 
 

Decimal Number           Binary Number 
0   0000 
1   0001 
2   0010 
3   0011 
4   0100 
5   0101 
6   0110 
7   0111 
   1000 
   1001 
   1010 
   1011 
   1100 
   1101 
   1110 
   1111 
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Let’s fill in the range of integers from –1 to –7 one integer at a time.  Starting with –1, we determine that 
this integer is represented by 1111 in 2’s complement notation, and we have: 

 
    Decimal Number     Binary Number 

0   0000 
1   0001 
2   0010 
3   0011 
4   0100 
5   0101 
6   0110 
7   0111 
   1000 
   1001 
   1010 
   1011 
   1100 
   1101 
   1110 
- 1     1111 

 

Moving on to –2, we determine that this integer is represented by 1110 in 2’s complement notation: 
 

    Decimal Number     Binary Number 
0   0000 
1   0001 
2   0010 
3   0011 
4   0100 
5   0101 
6   0110 
7   0111 
   1000 
   1001 
   1010 
   1011 
   1100 
   1101 
- 2   1110 
- 1     1111 

 
Adding the two’s complement representations for –3, –4, –5, –6 and –7, we have:   

 
    Decimal Number     Binary Number 

0   0000 
1   0001 
2   0010 
3   0011 
4   0100 
5   0101 
6   0110 
7   0111 
   1000 
-7   1001 
-6   1010 
-5   1011 
-4   1100 
-3   1101 
-2   1110 
-1     1111 
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We have one bit string left: 1000.  Should this be +8 or –8? 
 

It would be easy to have this string, 1000, represent +8.  After all, in binary, +8 is equal to 1000. 
 

But let’s consider –8.  In two’s complement notation this integer is represented by… 1000 !  So, we 
really do have a choice: we can let our last bit string 1000 be either +8 or –8.  Both would work. 

 
But one choice is much better than the other!  Look carefully at the table above: For all the positive 
numbers, the most significant bit in the four-bit string is a zero.  For all the negative numbers, the most 
significant bit in the four-bit string is a one.  If we assign the remaining bit string (1000) to the integer –8, 
it will continue to be the case that the most significant bit in the four-bit string is a one for all negative 
numbers and a zero for all positive numbers.  This is very handy—we can immediately tell if a number 
represents a positive or negative integer just by examining the most significant bit!  This is the way to go! 
 
The final assignment is: 

 
    Decimal Number     Binary Number 

0   0000 
1   0001 
2   0010 
3   0011 
4   0100 
5   0101 
6   0110 
7   0111 
-8   1000 
-7   1001 
-6   1010 
-5   1011 
-4   1100 
-3   1101 
-2   1110 
-1     1111 

 
To summarize: If we use four bits to store integers using two’s complement notation, the range of integers 
that can be stored is – 8 through +7, and, given the four-bit binary number, we can immediately tell if it is 
positive or negative by looking at the leftmost bit.  If the leftmost bit is a 0, the number is positive.  If the 
leftmost bit is a 1, the number is negative. 
 
How do we “reverse” the two’s complement process; i.e., given that a 4-bit two’s complement number is 
stored as, say, 1011, how can I easily determine that the bit string is storing the decimal value -5?   
 
To determine the decimal equivalent of a number stored in two’s complement notation, perform the 
following: 
 

x If the leftmost bit is a 0, the number is positive.  Simply convert the bit string to a decimal number. 
x If the leftmost bit is a 1, the number is negative.  To determine the decimal number: 

o Take the two’s complement of the bit string (i.e., flip all the bits and add one)  
o Convert the bit string to a decimal number 
o Append a negative sign to the result. 
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Example                                                                                                                                                                
 
Suppose we store integers in 4 bits using two’s complement notation.  What is the decimal representation of the 
number stored as 1111 ? 
 

Solution:   
 

 
                                                                                                                                                               

 
Example                                                                                                                                                                
 
Suppose we store integers in 4 bits using two’s complement notation.  What is the decimal representation of the 
number stored as 0101 ? 
 

Solution:   
 

                                                                                                                                                               

 
The foregoing results presumed that we were storing integers in two’s complement notation using 4 bits, 
but the results can be easily generalized to the case where we store integers in two’s complement notation 
using n bits. 

 
Example                                                                                                                                                                
 
What is the largest positive integer that can be stored in n bits using two’s complement notation? 

 
Solution:   
 
 
 
 

 
                                                                                                                                                               

 
Example                                                                                                                                                                
 
What is the smallest negative integer that can be stored in n bits using two’s complement notation? 

 
Solution: 
 
 

 
                                                                                                                                                               

 
We summarize important results.  If we store integers in two’s complement notation using n bits: 

 
x The left most bit functions as a sign bit.  If the leftmost bit is a 0, the number is positive; if the 

leftmost bit is a 1, the number is negative. 
 

x The range of values that can be stored is    
 

x Regardless of the number of bits used, the number zero is always represented as   
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x Regardless of the number of bits used, the number 1�  is always represented as 
 

   
 

x Regardless of the number of bits used, the most positive number is:  
 

   
 

x Regardless of the number of bits used, the most negative number is:   
 

   
  

 
Example                                                                                                                                                                
 
What is the decimal equivalent of this 32-bit two’s complement number? 
 
   1111 1111 1111 1111 1111 1111 1111 1100 
 

Solution:   
 

 

 
                                                                                                                                                               

 
Example                                                                                                                                                                
 
Show the calculation – 5 + 3  in 4-bit two’s complement notation.  Convert the answer back to decimal to 
confirm your answer is correct. 
 

Solution: 
     
 
 
  
 

 
                                                                                                                                                               

 
Example                                                                                                                                                                
 
Show the calculation 6 + 3  in 4-bit two’s complement notation.  Convert the answer back to decimal to confirm 
your answer is correct. 
 

Solution: 
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Example                                                                                                                                                                
 
Show the calculation – 6  + (  – 3 )  in 4-bit two’s complement notation.  Convert the answer back to decimal to 
confirm your answer is correct. 
 

Solution:    
 
 
 
 
 
 
 
 
   

 
                                                                                                                                                               

 
Overflow is recognized when we add 2 numbers of the same sign and get a result of the opposite sign. 

 
1.7 Binary Subtraction 
 

Subtraction in binary entails nothing new!  To compute a – b, we compute a + ( – b) where – b is 
represented using two’s complement notation. 

 
Example                                                                                                                                                                
 
Show the subtraction 3 2�  in a two’s complement computer that stores integers in 4 bits. 

 
Solution:    

 
 
 

                                                                                                                                                               

 
Example                                                                                                                                                                

 
Suppose we use six bits to represent a two’s complement binary number.  Do the following subtraction.  
  

   011101 
  � 100101 
 
 

Show the subtraction above with all numbers converted to decimal, and explain your results.  
 

Solution:    
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We have overflow if the addition of two positive numbers yields a negative number, or if the addition of 
two negative numbers yields a positive number.  It turns out that there is a quick check that can be done to 
detect if overflow has occurred: If the carry into the most significant bit (which serves as a sign bit) differs 
from the carry out from the most significant bit, overflow has occurred.  

 
 
1.8 The Hexadecimal Number System 
 

We often have to deal with large positive binary numbers.  For instance, consider that computers connect 
to the Internet using a Network Interface Card (NIC).  Every NIC in the world is assigned a unique 48-bit 
identifier as an Ethernet address.  The intent is that no two NICs in the world will have the same address.  
A sample Ethernet address might be:   
 

000000000100011101011110011111111001001000110110 
 
As another example, computer engineers must oftentimes look at the contents of a specific item in 
computer memory.  You might, for instance, have to look at a variable that is stored at address: 
 
  00000000000100101111111101111100 
 
You would probably agree that these long binary strings would be cumbersome to transcribe or to read off 
to a coworker.  Even if you have come to love the binary number system, you would still likely agree that 
these long strings are too much of a good thing. 

 
Fortunately, large binary numbers can be made much more compact—and hence easier to work with—if 
represented in base-16, the so-called hexadecimal number system.  You may wonder: Binary numbers 
would also be more compact if represented in base-10—why not just convert them to decimal?  The 
answer, as you will soon see, is that converting between binary and hexadecimal is exceedingly easy—
much easier than converting between binary and decimal. 

 
The Hexadecimal Number System 
   

The base-16 hexadecimal number system has 16 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F).  
Note that the single hexadecimal symbol A is equivalent to the decimal number 10, the single symbol B is 
equivalent to the decimal number 11, and so forth, with the symbol F being equivalent to the decimal 
number 15.  
 
Just as with decimal notation or binary notation, we again write a number as a string of symbols, but now 
each symbol is one of the 16 possible hexadecimal digits (0 through F).  To interpret a hexadecimal 
number, we multiply each digit by the power of 16 associated with that digit’s position. 
 
For example, consider the hexadecimal number 1A9B.  Indicating the values associated with the positions 
of the symbols, this number is illustrated as: 

 
1  A  9  B    
 
 

 
 

   316         216           116                 016   
       position        position                position        position 
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Converting a Hexadecimal Number to a Decimal Number 
 

To convert a hexadecimal number to a decimal number, write the hexadecimal number as a sum of powers 
of 16.  For example, considering the hexadecimal number 1A9B above, we convert this to decimal as: 

 
  1A9B =  � � � � � � � �3 2 1 01 16 16 9 16 16A B� � �   =  4096 + 10(256) + 9(16) + 11(1) =  6811  
 
Example                                                                                                                                                                

 
Express the hexadecimal number  3CB  as a decimal number.   
 

Solution:   
 

                                                                                                                                                               

 
Converting a Decimal Number to a Hexadecimal Number 
 

The easiest way to convert from decimal to hexadecimal is to use the same division algorithm that you 
used to convert from decimal to binary, but repeatedly dividing by 16 instead of by 2.  As before, we keep 
track of the remainders, and the sequence of remainders forms the hexadecimal representation.   
 
For example, to convert the decimal number 746 to hexadecimal, we proceed as follows: 

 
        Remainder 

                      16 |  746          

   |  46                A 
 

                             |  2                E 
 

                     |   0  2 
                                                                         2EA  

 
So, the decimal number 746 =  2EA in hexadecimal 

 
Note that with hexadecimal notation, as with binary and decimal notation, we must be careful that the base 
is understood.  When we speak of the number “23”, do we mean the decimal number 23 (in base 10), or 
do we mean the hexadecimal number 23 (which happens to equal 35 in base 10)?  If the base is not clear 
from the context, it can be made explicit by including the base as a subscript as in: 16 1023 35 .  Some 
texts use the prefix 0x to indicate that a number is hexadecimal.  That is, instead of writing 1623  some 
texts will use the notation 0x23. 

 
You may be happy to learn that, as a practical matter, engineers rarely have to convert between decimal 
and hexadecimal (exams administered by sadistic professors being one of those rare instances!).   
 
 

Converting a Hexadecimal Number to a Binary Number 
 
Engineers often have to convert between binary and hexadecimal but, as we promised, that is quite simple 
to do.   

 
 



 25 

We can convert directly from hexadecimal notation to the equivalent binary representation by using the 
following procedure: 

 

x Convert each hexadecimal digit to a four digit binary number, independent of the other 
hexadecimal digits. 
 

x Concatenate the resulting four-bit binary numbers together. 
 

For example, to convert the hexadecimal number 4DA9 to binary, we first convert each hexadecimal digit 
to a four-bit string: 

 

4 = 0100 D = 1101 A = 1010   9 = 1001 
 

and then concatenate the results:  The resulting binary number is:  0100 1101 1010 1001.  We can 
drop leading zeros (from the leftmost quartet only!), giving us: 
 

  4DA9  =  100110110101001 
 
Example                                                                                                                                                                

 
Convert the hexadecimal number  13F  to binary. 
 

Solution:   
 

 
 

                                                                                                                                                               

 
Converting a Binary Number to a Hexadecimal Number 
 

Converting from binary to hexadecimal entails reversing the procedure for converting from hexadecimal 
to binary.  Specifically, we can convert directly from binary notation to the equivalent hexadecimal 
representation by using the following procedure: 

 

x Starting at the right, collect the bits in groups of 4 
 

x Convert each group of 4 bits into the equivalent hexadecimal digit 
 

x Concatenate the resulting hexadecimal digits 
 

For example, to convert  110110101001  to hexadecimal, we collect the bits into groups of 4 starting at 
the right:  1101 1010 1001, and then we convert each collection of bits into a hexadecimal digit: 

 

  1101    1010    1001 
    D            A       9  
 
Thus 110110101001  =  DA9 

 
Example                                                                                                                                                                

 
Convert the binary number  110101001  to hexadecimal. 
 

Solution:   
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Example                                                                                                                                                                
 

Suppose the first byte of a variable is stored at memory location numbered: 
 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 
 

We say that this memory location is the address of the variable.  What is this variable’s address in hexadecimal 
notation? 
 

Solution:  0000   0000   0001   0010   1111   1111   0111   1100 
 

    
 
 

 
                                                                                                                                                               

 
Again, the hexadecimal number system simply provides us with a more convenient means of conveying 
binary quantities.  Instead of saying “The item is at address 1001000100111111”, we can say “The 
item is at address 913F.” 
 

Example                                                                                                                                                                
 

Suppose you are told that an item is at 32-bit address C356A20C.  What is the value of the fourth bit in this 
address, counting from the left?   
 

Solution:   
 
 
  

 
                                                                                                                                                               

 
You may now be comfortable with switching back and forth between binary and hexadecimal, but you 
may be wondering: Why is it so easy…why can I get away with converting each hexadecimal digit to 
binary, independent of the other digits in the number?  After all, we cannot just look at a decimal base-10 
number, such as 732, and immediately convert it to base-2 by looking at each of the digits individually.       

 
Good question!  An explanation is provided in Appendix 1-3. 
 
So, now you should be comfortable going back and forth between binary, decimal and hex 
representations. 
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1.9 Representation of Characters 
 

You now know how positive and negative integers are represented within the hardware of a computer.  
We now address the representation of characters, such as letters of the alphabet, punctuation signs and 
other assorted symbols (e.g., $, %, ?, etc.). 
 
Characters are stored within the computer using the American Standard Code for Information Interchange 
code—the ASCII code—shown in the table below.     

 
 

 
ASCII 

 
Hex 

 
Symbol 

 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

NUL 
SOH 
STX 
ETX 
EOT 
ENQ 
ACK 
BEL 
BS 

TAB 
LF 
VT 
FF 
CR 
SO 
SI 

 

 
ASCII 

 
Hex 

 
Symbol 

 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
1B 
1C 
1D 
1E 
1F 

DLE 
DC1 
DC2 
DC3 
DC4 
NAK 
SYN 
ETB 
CAN 
EM 
SUB 
ESC 
FS 
GS 
RS 
US 

 

 
ASCII 

 
Hex 

 
Symbol 

 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
2A 
2B 
2C 
2D 
2E 
2F 

(space) 
! 
" 
# 
$ 
% 
& 
' 
( 
) 
* 
+ 
, 
- 
. 
/ 

 

 
ASCII 

 
Hex 

 
Symbol 

 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
3A 
3B 
3C 
3D 
3E 
3F 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
: 
; 
< 
= 
> 
? 

 

 
ASCII 

 
Hex 

 
Symbol 

 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
4A 
4B 
4C 
4D 
4E 
4F 

@ 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 

 

 
ASCII 

 
Hex 

 
Symbol 

 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
5A 
5B 
5C 
5D 
5E 
5F 

P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 
[ 
\ 
] 
^ 
_ 

 

 
ASCII 

 
Hex 

 
Symbol 

 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
6A 
6B 
6C 
6D 
6E 
6F 

` 
a 
b 
c 
d 
e 
f 
g 
h 
i 
j 
k 
l 
m 
n 
o 

 

 
ASCII 

 
Hex 

 
Symbol 

 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 

70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
7A 
7B 
7C 
7D 
7E 
7F 

p 
q 
r 
s 
t 
u 
v 
w 
x 
y 
z 
{ 
| 
} 
~ 
� 
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Each ASCII symbol is shown with both its hexadecimal representation and its base-10 representation.  
Suppose we wanted to know how the symbol for the question mark is stored internally within the 
computer.  Scanning the table for the question mark, we note that its hexadecimal value is 3F.  Converting 
this hexadecimal value to binary, we conclude that the question mark is stored as 00111111. 

  
Example                                                                                                                                                                

 
How is the letter t stored in memory? 
 

Solution:     

 
                                                                                                                                                               

 
Suppose you use super-hero powers to look into a memory location and you see: 01110100.  What is the 
meaning of the quantity stored at this location?  If you convert this binary value to an integer, you would 
conclude that the integer 116 is stored in this location.  On the other hand, looking at the ASCII table, you 
could conclude that the character t is stored at this location.  Which is correct?   
 
The meaning of each piece of data stored within a computer is defined by the programmer.  For example, 
suppose the programmer is using a variable named midcode to store a value.  If the programmer intends 
this value to be an integer that is equal to 116, he might include the line of code: 
 
  int midcode = 116; 
 
On the other hand, if the programmer intends the value to be the character t, he would instead use this line 
of code: 
 
  char midcode = ‘t’; 
 
In both cases, the data is stored as 01110100.  The computer will interpret the data according to the 
instructions provided by the programmer.  If the programmer has instructed the computer to interpret 
midcode to be an integer, then the bit string 01110100 will be interpreted as the integer 116.  On the 
other hand, if the programmer has instructed the computer to interpret midcode to be a character, then 
the bit string 01110100 will be interpreted as the letter t.   

 
 
1.10 Binary-Coded Decimal  
 

We close with a brief overview of a different manner of converting between binary and decimal.   
 
In some practical applications we will use a digital logic circuit to drive a numeric display, where each 
individual display unit displays a single digit.  So, for example, we might have the number 472 in our 
logic circuit, and we would like to display this on three separate display units (one for the 4, one for the 7 
and one for the 2).   
 
Working with this sort of display hardware is facilitated through the use of binary-coded decimal (BCD), 
where each individual digit is represented by a 4-bit number.  For example, to represent the decimal 
number 472 in binary-coded decimal (BCD), we convert each digit to a four bit binary number, 
independent of the other decimal digits.  Thus, 472 equal  0100 0111 0010 in BCD. 

 
 
 



 29 

Problems  
 
1.1 Convert the following binary numbers to decimal number: 
 
 (a)  10101 
 (b)  11001 
 (c)  100000 
 (d) 111111 
 
1.2 Convert the following decimal numbers to binary: 
 
 (a) 50 
 (b) 100 
 (c) 128 
 (d) 500 
 
1.3 Perform the addition of the following unsigned (i.e., not two’s complemented) binary numbers: 
 
 (a) 1111  (b) 1011  (c) 1110011   
      + 1010         + 0011                    +   0011110 
 
 
1.4 Suppose that unsigned numbers are stored in five bits.  Perform the following additions, indicating 

which additions produce overflow. 
 
 (a) 111100  (b) 101100  (c) 111001   
      + 001011         + 001100                  +   011001 
 
 
1.5 Suppose we use 6 bits to store integers.  Show the following additions in binary: 
 
 (a) 10 + 5 
 (b) 32 + 31 
 (c) 1 + 31 
 (d) 21 + 21 
 
1.6 Express the following numbers as 8-bit binary numbers in two’s complement notation: 
 
 (a) 60 
 (b) -60  
 (c) 1 
 (d) -1 
 (e) 0 
 (f) 12 
 (g) -15 
 (h) -128 
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1.7 Convert the following six-bit two’s complement numbers to decimal: 
 
 (a) 010111 
 (b) 110111 
 (c) 011111 
 (d) 100000 
 
 
1.8 Show each of the following calculations in 4-bit two’s complement notation.  In each case, convert the 

result (in binary) back to a decimal number. 
 
 (a)  – 5 + 7   
 (b)  – 3 + 3   
 (c)  6 4�   
 (d)  2 3� �   
 
1.9 Suppose we use six bits to represent a two’s complement binary number.   
 
 (a)  What is the largest number that can be represented? 
 (b)  What is the smallest number that can be represented? 
 (c)  How many total base-10 numbers can be represented? 
 
1.10.   Suppose we use six bits to represent a two’s complement binary number.  Perform the following 

additions, indicating when overflow occurs: 
 
 (a)  010101  (b)  100000   
  + 001101   + 110011 
 
 
 
 
 (c)  010101  (d)  100110   
  + 101111   + 111111 
 
 
1.11.   Suppose we use six bits to represent a two’s complement binary number.  Perform the following 

subtractions, indicating when overflow occurs: 
 
 (a)  010101  (b)  100000   
  - 001101   - 110011 
 
 
 
 
 (c)  010101  (d)  100110   
  - 101111   - 111111 
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1.12 Convert the following binary number to hexadecimal: 
 
 (a) 10110010101001001 
 (b) 10000000001 
 (c) 1111111 
 (d) 110011 
 
 
1.13 Convert the following hexadecimal numbers to binary: 
 
 (a) ABCD 
 (b) 111111 
 (c) 101 
 (d) 23AC 
 
 
1.14 How many bits are needed to represent: 
 
 (a) the 26 letters of the alphabet 
 (b) the individual cards in a deck of playing cards 
 (c) the faces on a pair of dice 
 
 
1.15 Convert the decimal number 500 to BCD. 
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